In Situ Breast Carcinoma

James L. Connolly, M.D
Beth Israel Deaconess Medical Center
Professor of Pathology
Harvard Medical School
Boston, MA
Content

- In Situ Ductal Carcinoma
- In Situ Lobular Carcinoma
- Carcinoma with Mixed Ductal and Lobular Features/Pleomorphic Lobular Carcinoma In Situ
- Encysted Papillary Carcinoma
Ductal Carcinoma in Situ: Differential Diagnosis, Clinical Significance, and Prognostic Factors

- Traditional (Architectural) Classification
- Controversies & Problems
- Biologic Differences
- Segmental Distribution
- New Classification Systems
- Treatment
Classification of DCIS

- Traditional classification based primarily on architecture
- Comedo, solid, cribriform, papillary micropapillary, clinging
Papillary Ductal Carcinoma In Situ

- In contrast to papillomas, a uniform cell population
- Hyperchromatic cuboidal to columnar cells
- +/- clear epithelial cells near the base (globoid cells), which may mimic myoepithelial cells
Papillary Ductal Carcinoma In Situ

- Differential includes papilloma/invasive carcinoma
- It has fibrovascular cores
- There are no myoepithelial cells in the fibrovascular cores
- The blood vessels mark with smooth muscle markers
- p63 is negative in the cores
- It has myoepithelial cells around the periphery of the duct
Papillary Ductal Carcinoma In Situ

- The associated invasive carcinoma usually NOS/NST
- Occasionally invasive in nests maintaining fibrovascular cores
- Invasive papillary carcinoma may metastasize maintaining a nested papillary appearance mimicking DCIS
Biphasic DCIS
Problems with the Architectural Classification System

- Definitions for subtypes not uniform
- Many lesions have mixtures of subtypes
Heterogeneity of DCIS
100 consecutive cases

- 76 non-comedo lesions
 - mixture of patterns in 30%
 - most commonly crib + mp

- 24 comedo lesions
 - Non-comedo areas in 42%
 (Lennington, 1994)
DCIS

- While architecture varies considerably within an individual case

- Nuclear morphology is much more constant
DCIS

• Most newly proposed classification systems rely primarily on Nuclear morphology
• And have 3 grades
Alternative Classification Proposal

Ductal Intraepithelial Neoplasia (DIN)

- Is appealing at some level
- UDH through high grade DCIS as a spectrum (DIN1-DIN3)
- There is no scientific evidence that ductal lesions progress in the breast following this pathway
<table>
<thead>
<tr>
<th></th>
<th>High Grade</th>
<th>Low Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytology</td>
<td>High grade</td>
<td>Low grade</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
<tr>
<td>Aneuploidy</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
</tbody>
</table>
DCIS: Differentiation

<table>
<thead>
<tr>
<th></th>
<th>High Grade</th>
<th>Low Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER+, PR+</td>
<td>Infrequent</td>
<td>Frequent</td>
</tr>
<tr>
<td>Proliferative rate</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
DCIS: Differentiation

<table>
<thead>
<tr>
<th></th>
<th>High Grade</th>
<th>Low Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2/neu+</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
<tr>
<td>bcl2+</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
<tr>
<td>P53 mutations</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>Frequent</td>
<td>Infrequent</td>
</tr>
</tbody>
</table>
DCIS: Differentiation

<table>
<thead>
<tr>
<th></th>
<th>High Grade</th>
<th>Low Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microinvasion</td>
<td>More common</td>
<td>Less common</td>
</tr>
<tr>
<td>Calcifications</td>
<td>“Course granular”</td>
<td>“Psammomatous”</td>
</tr>
<tr>
<td></td>
<td>Linear branching</td>
<td>Fine granular</td>
</tr>
</tbody>
</table>
Genetic Abnormalities In DCIS

High Grade Intermediate Low Grade

Amplifications >Losses on 16q Losses on 16q
17q12, 11q13

Buerger H. J Pathol 1999; 187:396
DCIS

- The molecular and genetic abnormalities seen with DCIS are the same seen with invasive cancer
- Low grade DCIS has changes of low grade invasive cancer and of the special types of invasive cancer
- High grade DCIS has changes seen in high grade invasive cancer
Numerous studies have now documented that ductal carcinoma in situ has the same subtypes previously identified for invasive carcinoma:

- Luminal a
- Luminal b
- HER-2/neu over expressing
- Basal like
DCIS: Size > 10 mm

HER2/neu+ 83%

HER2/neu- 33%

De Potter C. Hum Pathol 1995; 26:601
Mammographic Appearance of DCIS

- Microcalcifications alone most common (~70%)
- Other (~30%)
 - Soft tissue abnormality with microcalcifications
 - Soft tissue abnormality alone
 - mass sometimes circumscribed
 - architectural distortion
DISTRIBUTION OF DCIS

- The myth of multicentricity

- Most cases show unicentric (segmental) distribution

- Involved segment may be large
“Segments” of the Breast
Mammographic vs Histologic Size
(using standard views without magnification)

Size discrepancy > 2cm

High Grade 8/50 (16%)

Low Grade 15/32 (47%)

Holland et al 1984
DCIS: Differentiation

<table>
<thead>
<tr>
<th></th>
<th>High Grade</th>
<th>Low Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ excision margin</td>
<td>Less frequent</td>
<td>More frequent</td>
</tr>
</tbody>
</table>

Mammographic vs Pathologic Size (magnification views)

- 59 mastectomy specimens with DCIS
- Maximum size discrepancy ~1.5 cm; similar in High and Low Grade lesions

Holland et al 1994
Mammographic vs Pathologic Size Magnification Views

- High Grade: 3/14 (21%)
- Intermediate Grade: 1/7 (14%)
- Low Grade: 2/14 (14%)

(Holland 1994)
Mammographic vs Pathologic Size

- Mammography still underestimated size of DCIS
- Size discrepancy < 2cm in ~80-85% of cases (Holland, 1994)
Is there a relationship between Grade of DCIS and Outcome?
<table>
<thead>
<tr>
<th>RX</th>
<th>F/U</th>
<th>DCIS “high”</th>
<th>Grade “low”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagios</td>
<td>CS</td>
<td>124 mos</td>
<td>33%</td>
</tr>
<tr>
<td>Schwartz</td>
<td>CS</td>
<td>47 mos</td>
<td>48%</td>
</tr>
<tr>
<td>Collins</td>
<td>CS</td>
<td>62 mos</td>
<td>25%</td>
</tr>
<tr>
<td>Solin</td>
<td>CS+RT</td>
<td>5 yr</td>
<td>11%</td>
</tr>
<tr>
<td>Solin</td>
<td>CS+Rt</td>
<td>15 yr</td>
<td>18%</td>
</tr>
<tr>
<td>B-17</td>
<td>CS</td>
<td>8yr</td>
<td>34%</td>
</tr>
<tr>
<td>B-17</td>
<td>CS+RT</td>
<td>8yr</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagios</td>
<td>NG 1 without necrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silverstein</td>
<td>NG 1 or 2 without necrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solin</td>
<td>NG 1 or 2 with necrosis, NG 1 or 2 without necrosis, NG 3 without necrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher</td>
<td>NG 1 or 2 with necrosis, NG 1 or 2 without necrosis, NG 3 without necrosis, NG 3 with necrosis in <1/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCIS

In evaluating studies of histologic type and risk of local recurrence, it is essential to understand the composition of the groups being compared.

(NOT EVERYONE’S “LOW GRADE” IS THE SAME)
Considerations Regarding Recurrence and Histologic Type

- Poorly differentiated lesions are associated with necrosis and calcification.
- Poorly differentiated lesions grow more rapidly.
- Studies have relatively short follow-up.
- Well differentiated lesions can recur up to 4 decades after biopsy (Sanders M., Cancer 2005).
• The higher recurrence rate in poorly differentiated DCIS may be a function of short follow-up and ease of detection
Local Recurrence Related to Histologic Type

Influence of Length of F/U (Solin et al, CS+RT)

<table>
<thead>
<tr>
<th>Follow-up (act)</th>
<th>Local</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>high grade</td>
<td>low grade</td>
</tr>
<tr>
<td>5 years</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>8 years</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>10 years</td>
<td>18%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Importance of Margin Assessment: DCIS

• Positive margins identified in many studies as the most important risk factor for local recurrence

• However, margin status alone may be suboptimal in defining adequacy of excision
NSABP B-17
Pathologic Subset Analysis, 1995
Margins and Local Recurrence (mean f/u 48 mos)

<table>
<thead>
<tr>
<th></th>
<th>CS</th>
<th>CS +RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive/unk</td>
<td>25%</td>
<td>10%</td>
</tr>
<tr>
<td>Negative</td>
<td>11%</td>
<td>4%</td>
</tr>
</tbody>
</table>
Unicentric (Segmental) Involvement

Continuous

Multifocal (gaps)
Gaps Between Foci of DCIS

(Faverly, Holland; 1994)

<table>
<thead>
<tr>
<th>Gap Size</th>
<th># (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No gap</td>
<td>30 (50%)</td>
</tr>
<tr>
<td><5mm</td>
<td>19 (32%)</td>
</tr>
<tr>
<td>5-10mm</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>>10mm</td>
<td>5 (8%)</td>
</tr>
</tbody>
</table>
Gap Size Related to DCIS Grade

(Faverly, Holland; 1994)

<table>
<thead>
<tr>
<th>Gap size</th>
<th>Low (n=27)</th>
<th>Int. (n=9)</th>
<th>High (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>30%</td>
<td>45%</td>
<td>90%</td>
</tr>
<tr>
<td><5mm</td>
<td>44%</td>
<td>33%</td>
<td>5%</td>
</tr>
<tr>
<td>5-10mm</td>
<td>11%</td>
<td>11%</td>
<td>5%</td>
</tr>
<tr>
<td>>10mm</td>
<td>15%</td>
<td>11%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Gaps in Low Grade DCIS

Large histologic sections
High grade DCIS usually unifocal
Low grade DCIS often multifocal

Foschini MP., Human Pathology 2007
In order to diagnose low grade DCIS you need cellular monomorphism and architectural change.

Some areas of low grade DCIS are diagnostic while other areas lack sufficient architectural change.

The Gaps may be diagnostic not biological.
Clonal Analysis of DCIS

• 7 cases of “predominantly intraductal carcinoma” studied: all monoclonal
• 3 cases with multiple foci of DCIS: every sample monoclonal, and same allele of PGK gene inactivated in each case
• All cases comedo type
Breast Failure in Patients with Negative Margins: The Wm Beaumont Experience

of Ducts With DCIS Near Margin

<table>
<thead>
<tr>
<th># Ducts with DCIS</th>
<th>12 yr Recurrence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1-7</td>
<td>11</td>
</tr>
<tr>
<td>≥8</td>
<td>25</td>
</tr>
</tbody>
</table>
DCIS

- 33% of patients with negative excision margins who had post-operative mammography performed, which revealed microcalcifications, had residual DCIS

Waddell B, 2000
• Even with “free” margins, if there is a significant amount of DCIS near the margins, a re-excision should be considered.
Margin Width and Local Recurrence
(Silverstein, 1999)

- Margin width \geq10mm:
 - low risk of local recurrence for patients treated with CS+RT or CS alone
 - risk of local recurrence not affected by
 - Use of radiotherapy
 - nuclear grade
 - presence of comedo necrosis
 - lesion size
Margin Width and Local Recurrence
(Silverstein, 2006)

- Margin width ≥ 10mm:
 - 12-Year probability of local recurrence
 - with CS alone 13.9% (3.4% invasive)
 - with CS+RT 2.5% (1.6% invasive)
How Wide is Wide Enough?

- Not a resolved issue
- Wider excisions associated with lower local recurrence but poorer cosmetic outcome
- Optimal margin width likely differs for patients treated with CS+RT and CS alone
Margin Width and Local Recurrence
Wong, 2006(JCRT)

- Prospective study for small (2.5 cm) non-HG DCIS
- Margin width 1 cm
- No RT
- Accrual closed early due to high LR rate
- 5-year LR 12%
ECOG ES5194 Excision +/- Tam

- DCIS Excised minimum 3mm margin
- Two arms
 - Low or intermediate grade 2.5 cm or smaller
 - High grade (NG3 + necrosis 1 cm or smaller)
- Specimen sequentially sectioned and completely embedded
- Post excision Mag mammo negative for calcs
ECOG ES5194 Excision +/- Tam 2006

- Ipsilateral Breast recurrence at 5 years
- High grade 14.8% (7.2-22.3%)
- Low or intermediate 6.1% (4.0-8.2%)
- The use of radiotherapy decreased recurrence in all groups
Size (Extent) of DCIS

- Size related to likelihood of finding
 - occult invasion
 - lymph node metastases
- Size related to ability to perform adequate excision and achieve satisfactory cosmesis
Problems in Determining Size

- Often underestimated by mammography
- Grossly evident “tumor” rarely present
- Microscopically, lesion often present on >1 slide
- Accurate assessment requires total, sequential embedding or some modification thereof
Estimation of Size

• If mammo-path discrepant, use larger size
The BIDMC Approach

• All tissue is placed in disposable cassettes Labeled numerically and sequentially
• If the calcifications are associated with benign findings, no more sampling
• If DCIS, additional cassettes can be submitted maintaining orientation
Estimation of Size

- Blocks 3 mm thick x # of involved blocks
First Generation Randomized Clinical Trials

“Excision”

- Radiation Therapy
- Observation
First Generation Randomized Trials With Available Results

NSABP-B17
EORTC 10853
Local Recurrence Rates in NSABP-B17 and EORTC 10853 Trials

<table>
<thead>
<tr>
<th></th>
<th>NSABP-B17</th>
<th>EORTC 10853</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excision</td>
<td>27% (3.6%/yr)</td>
<td>26% (3.8%/yr)</td>
</tr>
<tr>
<td>Excision+RT</td>
<td>12% (1.6%/yr)</td>
<td>15% (2.1%/yr)</td>
</tr>
<tr>
<td>% Red’n</td>
<td>56%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>LE</td>
<td>LE+RT</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Free</td>
<td>29%</td>
<td>13%</td>
</tr>
<tr>
<td>Involved/unk</td>
<td>39%</td>
<td>17%</td>
</tr>
</tbody>
</table>

p=NS
NSABP B17
8 Year Update

<table>
<thead>
<tr>
<th>Breast Recurrence</th>
<th>LE</th>
<th>LE+RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abs/Sl</td>
<td>23%</td>
<td>13%</td>
</tr>
<tr>
<td>Mod/marked</td>
<td>40%</td>
<td>14%</td>
</tr>
</tbody>
</table>
Risk Factors For Local Recurrence
EORTC 10853

• Age < or = 40
• Palpable lesion
• No radiation
• Intermediate or high grade DCIS
• Solid or Cribriform v Micropapillary or Clinging Pattern
• Doubtful margin
• All groups benefited from Radiation

Bijker, N et. al. JCO, 2006
Second Generation Randomized Clinical Trials

Excision + RT

- Tamoxifen
- Placebo
NSABP B-24 Trial
(5 yr actuarial results)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Tam</th>
<th>%redn</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>9.3%</td>
<td>6.0%</td>
<td>35%</td>
<td>0.04</td>
</tr>
<tr>
<td>Invasive LR</td>
<td>4.2%</td>
<td>2.1%</td>
<td>50%</td>
<td>0.03</td>
</tr>
<tr>
<td>Non-inv LR</td>
<td>5.1%</td>
<td>3.9%</td>
<td>24%</td>
<td>0.43</td>
</tr>
<tr>
<td>CBC</td>
<td>3.4%</td>
<td>2.0%</td>
<td>41%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Lancet, 1999
Comparison of the 5-Year Local Recurrence Rates in NSABP B17 and B24 Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>Recurrence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>B24</td>
<td>Tamoxifen</td>
<td>7%</td>
</tr>
<tr>
<td>B24</td>
<td>Placebo</td>
<td>12%</td>
</tr>
<tr>
<td>B17</td>
<td>Lumpectomy+XRT</td>
<td>12%</td>
</tr>
<tr>
<td>B17</td>
<td>Lumpectomy</td>
<td>25%</td>
</tr>
</tbody>
</table>
Reduction in Recurrence

- Seen only in ER+ cases
- For this reason we are currently testing our cases of DCIS for estrogen receptors
Mortality of DCIS Treated by Mastectomy

- Historically up to 2% of patients with DCIS developed metastatic disease
- For patients with mammographically detected disease the risk is lower
Axillary Node Involvement in DCIS (Pre-Sentinel)

- In the National Cancer Data Base 3.7% had positive nodes (10946 women)
- Other modern series 0-0.5%
Sentinel Lymph Node (SLN) Involvement in DCIS

• With the SNL procedure and IHC it is not unusual to find positive nodes
• In recent series 6 to 13 % of cases are positive
• Most of these cases are identified by IHC alone or first
• These patients are generally offered adjuvant therapy
Sentinel Lymph Node (SLN) Involvement in DCIS

• Given that fewer than 2% of patients with DCIS will develop distant metastasis it is clear that IHC identification does not translate to a known risk.
SLN in DCIS

- Two large studies have shown no relationship between positive SLN and recurrence in patients with DCIS

Sentinel Lymph Node (SLN) Involvement in DCIS

• For this reason we do not generally advocate for the use of IHC in those rare patients who undergo a SLN procedure
DCIS Consensus Conferences

- The European Organization for Research and Treatment of Cancer (EORTC) has held a number of DCIS Consensus Meetings
- In addition, Gordon Schwartz MD organized Meetings in the USA
DCIS Consensus Conferences
Recommendations for Reporting

- Nuclear grade
- Necrosis
- Polarization
- Architectural pattern(s)
- Margins
- Size of DCIS
DCIS Consensus Conferences
Recommendations for Reporting

- Location of Microcalcifications
- Correlation of tissue specimens with specimen x-ray and mammographic findings
DCIS Consensus Conferences

• In terms of Pathology Reporting the conclusions were essentially the same
Conclusions

• Distribution in breast, histologic features, size, and adequacy of excision appear to be important considerations in selecting appropriate therapy for patients with DCIS
Conclusions

- Difficulties in assessing each of these factors
- Relative importance and interactions among them not well defined
Where Do We Go From Here?

- Long term results from clinical trials
- Methods to assess full extent of lesion and to assure its removal
- Methods to assess biologic potential
- Agents to prevent or suppress progression to invasion
Final Pathology Report for DCIS

- Specimen size
- Nuclear grade
- Architectural pattern(s)
- Necrosis
- Lesion size/extent
- Location of calcifications
- Margins
Intracystic Carcinoma

- Stains for myoepithelial cells are generally negative
- Is it DCIS is an enlarged duct or an expansile invasive carcinoma
- If a single cystic space is involved, excision is generally curative
- Examine adjacent tissue
- If DCIS adjacent, prognosis same as any DCIS
Intracystic Carcinoma

- The proliferation may be papillary, cribriform or solid
- The wall is often thick and may have entrapped epithelium
- Entrapped epithelium does not qualify for invasive carcinoma
Intracystic Papillary Carcinoma

917 cases from the California Tumor Registry from 1988-2005

53% classified as having invasion

At 10 years the relative cumulative survival

- Insitu 96.8%
- With invasion 94.4%
- P.NS

Grabowski, J Cancer 2008, 113: 916
Lobular Neoplasia

- Atypical Lobular Hyperplasia
- Lobular Carcinoma insitu
Lobular Neoplasia (LCIS/ALH)

- Cytologically both lesions are identical
- Monomorphomic cell population (usually small)
- May have signet ring cells
- Pagetoid spread common
- Hallmark is lack of cellular cohesion (e-cadherin negative)
Lobular Neoplasia (LCIS/ALH)

- The difference between LCIS and ALH depends on the degree of lobular involvement and distention.
- Both lesions are generally felt to indicate elevated risk for subsequent development of breast cancer.
- There is a greater risk associated with LCIS than ALH.
Classical LCIS

- Type A - Small cells with uniform nuclei
- Type B - Larger cells with more variable nuclei; with or without prominent nucleoli
Markers in Classic LCIS

<table>
<thead>
<tr>
<th>Marker</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>Positive</td>
</tr>
<tr>
<td>Proliferation Rate</td>
<td>Low</td>
</tr>
<tr>
<td>HER2</td>
<td>Negative</td>
</tr>
<tr>
<td>p53</td>
<td>Negative</td>
</tr>
<tr>
<td>E-Cadherin</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Lobular Neoplasia (LCIS/ALH)

- In most women it is thought of as a risk factor for development of any type of breast cancer
- In women who develop Invasive Lobular Carcinoma (ILC) it is a direct precursor
Lobular Neoplasia (LCIS/ALH)

FREQUENCY

• Depends on definition
• Between 0.5-3.8% of biopsies done for a mass
• Much higher in mammographically driven biopsies ~ 5-15%
• 80-90% found in pre menopausal women
Lobular Neoplasia (LCIS/ALH)

- It is almost always an incidental finding
- While not usually a cause of microcalcifications frequently present near calcifications
- Multicentric in 60-80% of mastectomy specimens with LCIS/ALH
- Bilateral in ~ 25-35% of cases
Lobular Neoplasia (LCIS/ALH)

NATURAL HISTORY

- Subsequent invasive carcinoma 7-34.5%
- Relative Risk 5-12 times control populations
- % invasive breast cancer per year of FU 0.7-1.5

6 studies with greater than 5 years of follow up
Lobular Neoplasia (LCIS/ALH)

MANAGEMENT

• NSABP trials show a 50% reduction in breast cancer when these patients receive Tamoxifen
• Bilateral Mastectomy
• Observation
• Some advocate Unilateral Subcutaneous Mastectomy
Pleomorphic LCIS

• A lesion that lacks cohesion
• It has major biologic differences from what is usually felt to be LCIS
• Often has necrosis and apoptosis
• Has a high proliferative rate
Pleomorphic LCIS

• An E cadherin negative in situ carcinoma
• High nuclear grade
• Usually ER positive
• High proliferative rate (47-92% of cases)
• Her2/neu positive (5-25% of cases)
LCIS with Comedo Necrosis

18 cases of E cadherin negative LIN
• Usually associated with mammographic calcifications
• Invasive carcinoma present in 67% of cases
Pleomorphic LCIS / LCIS with Comedo Necrosis

- More aggressive biological characteristics
- More frequently associated with invasive carcinoma
Pleomorphic LCIS

- We do not have outcome studies of observation alone with these lesions.
- In order not to confuse the clinicians, at this time, I diagnose these lesions as insitu carcinoma with mixed ductal and lobular features.
- And advise they be treated as one would a comparable DCIS.
Histologic Differential Diagnosis between LCIS and Solid Small Cell DCIS

<table>
<thead>
<tr>
<th>Feature</th>
<th>LCIS</th>
<th>DCIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of cohesion</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Intracytoplasmic vacuoles</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Pagetoid ductal spread</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Microacini</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Polarity of cells at periphery</td>
<td>Absent</td>
<td>Present</td>
</tr>
</tbody>
</table>
Questions