Increasing Abdominal Distension and Ascites in a 29-year-old female

LASOP Annual Resident/Fellow Symposium

Sara Acree, M.D. (PGY-6)
Hematopathology Fellow
LAC+USC Medical Center
Clinical History

- **Pt:** 29-year-old Caucasian female
- **CC:** Abdominal enlargement
- **PSH:** Umbilical hernia repair (2012)
 Hiatal hernia repair (2011)
 Cholecystectomy (2011)
 Cesarean section (2010)
<table>
<thead>
<tr>
<th>Laboratory Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
</tr>
<tr>
<td>• WBC: 18.2 H</td>
</tr>
<tr>
<td>• Hb: 10.1 L</td>
</tr>
<tr>
<td>• HCT: 31.1 L</td>
</tr>
<tr>
<td>• PLT: 174</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COAG</td>
</tr>
<tr>
<td>• INR: 1.1</td>
</tr>
<tr>
<td>• PT: 12.7 H</td>
</tr>
</tbody>
</table>
Physical Examination

- Decreased/altered mental status
- Marked abdominal distension & ascites
- Progressive abdominal pain
Exploratory Laparotomy

- Surgery operative note described:

 “an extensive process resembling severe fibromatosis versus carcinomatosis”

- Marked inflammation surrounding the appendix and right ovary; therefore the patient underwent appendectomy and right oophorectomy.

- Multiple biopsies were taken of the peritoneum, omentum, and hernia sac.
Peritoneum
CD163
Peritoneum
IHC Summary

Positive for:
• CD68
• CD163

Negative for:
• CD3
• CD20
• CD21
• CD23
• CD35
• CD34
• CD117
• CD138
• CD1a
• S100
• Langerin
• ALK
• β-catenin
• IgG4
• Ki-67
Final Diagnoses

• Appendix
 – Luminal obliteration with non-specific fibrohistiocytic inflammation

• Omentum
 – Non-specific fibrohistiocytic inflammation

• Peritoneum
 – Suspicious for “Juvenile” Xanthogranuloma
Postoperative Course

- **Bilateral hydronephrosis**
 - bilateral ureteral stent placement (failed)
 - bilateral nephrostomy tube placement

- **Renal failure**
 - started on hemodialysis

- **Large bowel obstruction**
 - partial colectomy and colostomy
Clinical History, cont.

• PMH: Hypothyroidism (2010)
 Central diabetes insipidus (2010)
 Esophageal strictures (2006)
 - “required multiple dilations”

• MEDS: Synthroid
 DDAVP
Abdominal CT: view of IVC and right atrium
Transthoracic Echocardiogram (TTE)

Cardiac CT
Cardiac Mass

FXIIIa
Final Clinicopathologic Diagnosis

Non-Langerhans cell histiocytosis, most consistent with disseminated juvenile xanthogranulomatosis/Erdheim-Chester disease
Erdheim and Chester

Jakob Erdheim
- Austrian pathologist
- Lived 1874-1937

William Chester
- American pathologist
- Erdheim’s pupil

Described “Über Lipoidgranulomatose” (1930)
The term “ECD” first used by Elaine Jaffe (1972)
Histiocytic & Dendritic Cell Neoplasms (2008 WHO Classification):

- Histiocytic sarcoma
- Tumours derived from Langerhans cells
- Interdigitating dendritic cell sarcoma
- Follicular dendritic cell sarcoma
- Other rare dendritic cell tumours
- Disseminated juvenile xanthogranuloma
Histiocytic/Dendritic Cells

- S100 +
 - CD1a+
 - Langerhans cells
 - Birbeck granules
 - Langerin+
 - CD1a-
 - IDC
 - Complex cytoplasmic processes
 - T-cell areas

- S100 -
 - CD21/23/35+
 - Mesenchymal stem cell
 - FDC
 - Desmosomes
 - B-cell areas
 - CD21/23/35-
 - Myeloid stem cell
 - Histiocytes
 - CD68+
 - CD163+
Histiocytic/Dendritic Cells

- S100 +
 - CD1a+
 - Langerhans cells
 - Birbeck granules
 - Langerin+
 - CD1a-
 - IDC
 - Complex cytoplasmic processes
 - T-cell areas

- S100 -
 - Mesenchymal stem cell
 - Myeloid stem cell

- CD21/23/35+
 - FDC
 - Desmosomes
 - B-cell areas
 - CD68+
 - CD163+
 - CD123+
 - Histiocytes
 - PDC

- CD21/23/35-
 - Histiocytes
Disseminated Juvenile Xanthogranulomatosis

DEFINITION

- Characterized by a proliferation of histiocytes similar to those of the dermal JXG
- Commonly have a foamy (xanthomatous) component with Touton-type giant cells (xanthogranulomatous)
Disseminated Juvenile Xanthogranulomatosis

MORPHOLOGY

• The JXG cell = small, oval, slightly spindled with a bland, round to oval nucleus (without grooves) and pink cytoplasm

• Touton cells less common at non-dermal sites

• The cells become progressively lipidized (xanthomatous)

• EM = Histiocytic, w/o distinguishing features
Disseminated Juvenile Xanthogranulomatosis

IMMUNOPHENOTYPE

- Vimentin
- CD14
- CD68 (coarse granularity)
- CD163 (surface, cytoplasmic)
- Stabilin-1
- Factor XIIla
- Fascin (cytoplasm)
- S100
Disseminated Juvenile Xanthogranulomatosis

Adult Variant: Erdheim-Chester disease

- Later onset
- Retroperitoneal and periaortic involvement is common
- Concomitant macrophage activation syndrome can lead to:
 - cytopenias, liver damage and death

- Cumulative cohort of 259 cases (10 new cases)
- Most common signs & symptoms
- Noted differences in different age groups
Clinical presentation

Bone pain (26%)

Neurological symptoms (23%)
(exophtalmos; gaze disturbances; gait ataxia)

Diabetes Insipidus (22%)

 Constitutional symptoms (20%)

Retroperitoneal involvement (14%)
(renal failure; nephrovascular hypertension; hydronephrosis)

Pulmonary symptoms (12%)
(dyspnea)

Cutaneous involvement (11%)
(xanthoma; xanthelasma)

Cardiovascular involvement (6%)
(pericardial effusion)

Palpable mass (5%)

Hypogonadism, panhypopituitarism (3%)

Bilateral and symmetric cortical sclerosis
Bone Scintigraphy
• Most overlooked and misdiagnosed presentation
• Median diagnostic delay of 5 years.
Note:
- In 30% overall
- In 14% at presentation
- Frequently misdiagnosed as idiopathic retroperitoneal fibrosis.
Renal Involvement
Note:
- Independent predictors of poor prognosis and death
Cardiovascular Involvement

- Analyzed 127 cases of histiocytoses:
 - LCH, ECD, JXG, Rosai-Dorfman, HS, IDCS

- Positive in ECD (54%) and LCH (38%)

- The high frequency of BRAF V600E mutations in ECD and LCH suggests a common origin
BRAF V600E mutation

Described in various malignancies:

- Melanoma
- Colorectal cancer
- Thyroid carcinoma
- Hairy cell leukemia
- Histiocytoses (50%)
 - ECD
 - LCH

B-Raf is a member of the Raf kinase family of growth signal transduction protein kinases.

This protein plays a role in regulating the MAP kinase/ERKs signaling pathway, which affects cell division, differentiation, and secretion.
Missense substitution of valine by glutamic acid.

High Resolution Melt (HRM) Analysis

Wild-type control

Patient

V600E positive control

BRAF exon 15 c.1799T>A, V600E
Missense substitution of valine by glutamic acid.
A mouse monoclonal antibody specific for the BRAF V600E mutant

Cytoplasmic stain
Vemurafenib

• aka: Zelboraf, PLX4032

• Stands for “V600E mutated BRAF inhibition”

• Inhibitor of mutated BRAF

• Vemurafenib interrupts the B-Raf/MEK step on the B-Raf/MEK/ERK pathway

• FDA-approved for treatment of late-stage melanoma
Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation

*Julien Haroche,1,2 *Fleur Cohen-Aubart,1,2 *Jean-François Emile,3 *Laurent Arnaud,1,2 Philippe Maksud,4 Frédéric Charlotte,5 Philippe Cluzel,6 Aurélie Drier,7 Baptiste Hervier,1,2 Neila Benamer,8 Sophie Besnard,9 Jean Donadieu,10 and Zahir Amoura1,2

1Department of Internal Medicine and French reference Center for Rare Auto-immune and Systemic Diseases, Assistance Publique–Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France; 2Université Pierre et Marie Curie, UPMC University Paris 6, Paris, France; 3Research Unit (EA) EA4340 and Pathology Laboratory, Versailles University and AP-HP, Boulogne, France; Departments of 4Nuclear Medicine, 5Pathology, 6Radiology, 7Neuroradiology, and 8Pharmacy, Hôpital Pitié-Salpêtrière, University Paris 6, AP-HP, Paris, France; 9Department of Internal Medicine, Pontchaillou University Hospital, Rennes Cedex, France, and 10Department of Pediatric, AP-HP, Centre de Référence des Histioctyloses, Hôpital Trousseau, Paris, France

• 3 patients with multisystemic & refractory ECD
 – One patient had both ECD and LCH

• All patients had BRAF V600E mutation

• Treatment induced dramatic response
Erdheim-Chester Disease Therapy

BRAF +
- Vemurafenib

BRAF -
- Steroids
- Cladribine
- IFN-α
- Tyrosine kinase inhibitors
- Anakinra
Rationale and efficacy of interleukin-1 targeting in Erdheim–Chester disease

Achille Aouba,1,2 Sophie Georigin-Lavialle,2 Christian Pagnoux,1 Nicolas Martin Silva,3 Amédée Renand,2 Françoise Galateau-Salle,4 Sophie Le Toquin,3 Henri Bensadoun,5 Frederique Larousserie,6 Stéphane Silvera,7 Nicole Provost,8 Sophie Candon,9 Raphaèle Seror,1 Mathilde de Menthon,1 Olivier Hermine,2 Loïc Guillemin,1 and Boris Bienvenu3

- IL-1 network appears over-stimulated in ECD.
- IL-1 receptor antagonist synthesis is naturally induced after stimulation of IFN-α
- Recombinant IL-1 receptor antagonist
Clinical Follow-up

- Excellent response to Anakinra (Kineret)
- Regressed retroperitoneal fibrosis with resolution of ureteral obstruction, hydronephrosis and renal failure
- Regressed omental/peritoneal fibrosis with resolution of bowel obstruction
Unique Features of Present Case

• How is this case unusual?
 – Adult onset in absence of bony lesions
 – Cardiac and retroperitoneal involvement (<40 yo)
 – Aggressive dissemination within abdominal cavity
Summary

- ECD is a rare, systemic inflammatory disease of unknown etiology
- Characterized by multi-organ infiltration by CD68+ (CD1a-/S100-) lipid laden macrophages
- Extraordinarily heterogeneous clinical presentation and often overlooked diagnosis
- BRAF mutations identified in ~50% of cases
 - Therapeutic option: Vemurafenib
 - VE1 antibody
Acknowledgements

Imran N. Siddiqi, MD, PhD
Assistant Professor of Clinical Pathology, LAC+USC Medical Center
Director, LAC+USC Hematopathology Fellowship Program

Russell K. Brynes, MD
Co-director, LAC+USC Medical Center Core Laboratory
Director, LAC+USC Hematopathology Fellowship Program
References

Any Questions?

Thank You